If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+60x+117=0
a = 5; b = 60; c = +117;
Δ = b2-4ac
Δ = 602-4·5·117
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-6\sqrt{35}}{2*5}=\frac{-60-6\sqrt{35}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+6\sqrt{35}}{2*5}=\frac{-60+6\sqrt{35}}{10} $
| 5x2-5x-14=1 | | x+10=40# | | M=3,b=4 | | 9+2p=5 | | (8-x)8=-56 | | (x+10)²=81 | | 17=p/4+10 | | 15=5=4e | | 10(f+3)=80 | | 7=q/3+3 | | 3=y+5/10 | | r+24/9=3 | | 23=2x-x | | 6v-1=53 | | 4.5x3= | | 24=5p-6 | | 7x+5/2=6x+7 | | 2(3x-2)-3(4-3x)=2 | | 1/2^x=1/8 | | 4(x-2)=7(x-3) | | 19=2r+7 | | 6/12=n/1 | | Bx7=21 | | 4x+12=5-x | | (4a+2)=(2a+4) | | 7k+3=17 | | 1=3x^2-9x^2 | | 3x+13=7-8x | | 19=3+8f | | 16/12=n/1 | | 3x+250=110 | | -7/5x=-9/7x+8 |